Mechanistic study of the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ with Brønsted acid

Chi-Jung Su ${ }^{\text {a,b }}$, Min-Ling Chung ${ }^{\text {a,b }}$, Han-Mou Gau ${ }^{\text {b }}$, Yuh-Sheng Wen ${ }^{\text {a }}$ and Kuang-Lieh Lu ${ }^{\text {a }}$
${ }^{a}$ Institute of Chemistry, Academia Sinica, Taipei (Taiwan, ROC)
${ }^{\text {b }}$ Department of Chemistry, National Chung-Hsing University, Taichung (Taiwan, ROC)

(Received January 8, 1993; in revised form February 5, 1993)

Abstract

The reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})(1)$ with Bronsted acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ takes place initially via the protonation of $\mathbf{1}$ to yield the hydrido complex $\left[\left(\mu-\mathrm{H}^{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})\right]^{+}(2)\right.$, followed by substitution of labile acetonitrile ligand with carboxylate. anion to form the monodentate carboxylate complexes ($\mu-\mathrm{H}) \mathrm{O}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOR}\right)$ (3). Spectroscopic and crystallographic evidence is presented to explain mechanistic details of the reaction. Molecular structures of $(\mu-\mathrm{H}) \mathrm{Os}_{3}\left(\mathrm{CO}_{10}\left(\mathrm{CNPr}^{2}\right)\left(\eta^{1}-\mathrm{OCOCF}_{3}\right)\right.$ (3a) and $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOC} \equiv \mathrm{CH}\right)(3 \mathrm{~b})$ have been determined by X -ray diffraction studies. Crystal data: 3a: $P 2_{1} / n ; a=11.6632(19), b=14.7827(24), c=14.487(3) \AA ; \beta=103.635(15)^{\circ}, V=2427.4(7) \AA^{3}, Z=4, R=5.2 \%, R_{w}=5.4 \%$. 3b: $P_{2} ; a=14.853(3), c=9.158(3) \AA ; \quad \mathrm{A}=1749.6(7) \AA^{3}, Z=3, R=3.2 \%, R_{\mathrm{w}}=3.8 \%$.

1. Introduction

Cluster complexes have been proved to possess low-energy pathways leading to reactions with high product selectivity [1]. Mechanistic studies of ligand addition and substitution are essential for a detailed analysis of stoichiometric or catalytic processes involving transition metal cluster complexes [2]. In a previous attempt to understand the effect of isocyanide-carbonyl replacement on the reactivity of metal isocyanide complexes, we developed a facile route to the preparation of osmium isocyanide clusters $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CNR})$ by an ylide-type reaction [3-4], and synthesized the "lightly stabilized" complexes $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNR})(\mathrm{NCMe})$ as precursor to explore their reactions with propynoic acid [5]. Here we describe two crystal structures of the products $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOR}\right) \quad(\mathrm{R}=$ $\mathrm{CF}_{3}, \mathrm{HC} \equiv \mathrm{C}$) and several pieces of evidence which elucidate the mechanistic details of these reactions.

Correspondence to: Dr. K.-L. Lu.

2. Results and discussion

The reaction of complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ (1) with Brønsted acids in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was suggested to proceed via the protonation of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})$ (NCMe) to yield the hydrido complex $\left[(\mu-\mathrm{H}) \mathrm{Os}_{3}{ }^{-}\right.$ $\left.(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})\right]^{+}(2)$ at the first stage, followed by substitution of the labile nitrile ligand with carboxylate anion to form $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOR}\right)$ (3) with a terminal unidentate η^{1}-oxo mode. (Scheme 1). Some pieces of evidence to account for the reaction pathway are presented below.

Treatment of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ (1) with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives complexes formulated as $\left[(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})\right]^{+} \mathrm{X}^{-}$ (2a, $\mathrm{X}^{-}=\mathrm{BF}_{4}^{-} ; 2 \mathrm{~b}, \mathrm{X}^{-}=\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$). Although the counter anions (BF_{4}^{-}and $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$) are different, these two products showed the same IR spectrum in the $\nu(\mathrm{CO})$ stretching region ($2118 \mathrm{w}, 2090 \mathrm{ws}, 2075 \mathrm{~s}, 2037 \mathrm{~s}$ cm^{-1}), implying these two protonated products bear the same cation $\left[\left(\mu-\mathrm{H}^{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})\right]^{+}\right.$. In addition, the $\nu(\mathrm{CO})$ stretching of 2 shifts to higher

Scheme 1.
frequency for $67 \mathrm{~cm}^{-1}$ but retains a pattern integrity similar to that of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$, suggesting that the skeleton of the protonated metal clusters is analogous to that of the parent complex $\mathrm{Os}_{3^{-}}$

Fig. 1. orter diagram of $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOCF}_{3}\right)(3 \mathrm{a})$.
$(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$. The shift of $\nu(\mathrm{CO})$ stretching to higher frequency is due to the positive charge of the protonated complex 2. A similar observation was detected in the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})$ with HX [6], and an ionic derivative of a related type was also observed in the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with HX [7]. The IR spectrum of 2 a showed that a $\nu(\mathrm{CN})$ absorption appeared at $2231 \mathrm{~cm}^{-1}$, which is characteristic of the terminally coordinated isocyanide ligand [8].

The ${ }^{1} \mathrm{H}$ NMR spectra of the products from the reactions of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ with HBF_{4}. $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ are nearly the same. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2a showed a methyl signal of coordinated acetonitrile resonating at $\delta \mathbf{2 . 6 7}$, and two bridging hydride peaks at $\delta-16.57$ and -16.66 in a $20: 1$ ratio, indicating that the complex exists as two isomeric forms. The protonation of complex 1 is likely to take place in a regiospecific fashion allowing the intermediate to exist in two isomeric forms. Two possibilities for protonation may occur on different sites in complex 1 as shown in Scheme 1: The site a located between two Os atoms bearing the electron donating isocyanide and nitrile ligand is likely to be the most preferred position for protonation to generate the major isomer 2 . On the

Fig. 2. ORTEP diagram of $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOC}=\mathrm{CH}\right)$ (3b).
other hand, the site b between $\mathrm{Os}(\mathrm{CO})_{3}(\mathrm{NCMe})$ and $\mathrm{Os}(\mathrm{CO})_{4}$ is suggested to be the second preferred site for protonation to afford the minor isomer $\mathbf{2}^{\prime}$.

Treatment of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ with $1-2$ equiv of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gives complex $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNPr}^{2}\right)\left(\eta^{1}-\mathrm{OCOCF}_{3}\right)$ (3a). An X-ray crystal analysis of complex 3a was undertaken (Fig. 1). The molecule consists of a triangular cluster of osmium atoms with distances $\mathrm{Os}(1)-\mathrm{Os}(2)$ $=2.8890(11) \AA, \operatorname{Os}(1)-\mathrm{Os}(3)=2.8619(13) \AA$, and $\operatorname{Os}(2)-\operatorname{Os}(3)=2.9967(11) \AA$. The linear isocyanide ligand occupies an axial coordination site on $\mathrm{Os}(2)$ as observed in several other isocyanide metal carbonyl compounds [5,9]. The trifluoroacetate ligand coordinates axially on $\operatorname{Os}(3)$ with a terminal unidentate η^{1}-oxo coordination mode, demonstrating that the trifluoroacetate anion substitutes the labile acetonitrile ligand to form complex 3a. Bridging hydride ligands are known to have significant lengthening effect on the metalmetal bond [10], thus we predict that the bridging hydride ligand straddles the $\mathrm{Os}(2)-\mathrm{Os}(3)$ bond since this bond is substantially longer than the other two. The slight tilt of the trifluoroacetate ligand, with an $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{O}(11)$ angle of 84.2 (4) ${ }^{\circ}$, implies that a weak interaction probably remains between $\mathrm{Os}(3)$ and

O(12) of the trifluoroacetate ligand. The IR spectrum of 3a showed two absorption bands in the $\nu\left(\mathrm{CO}_{2}\right)$, stretching region at 1684 and $1401 \mathrm{~cm}^{-1}$. The separation between $\nu_{\mathrm{as}}\left(\mathrm{CO}_{2}\right)$ and $\nu_{\mathrm{s}}\left(\mathrm{CO}_{2}\right)$ frequencies (283 cm^{-1}) is substantially greater than that of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}$ ($223 \mathrm{~cm}^{-1}$) or $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{~K}\left(241 \mathrm{~cm}^{-1}\right)$ [11,12], indicating that the coordinated trifluoroacetate is arranged as a unidentate carboxylate mode according to the criterion [$\Delta_{\text {unidentate }}>\Delta_{\text {ionic }} ; \Delta$ is the separation between $\nu_{\mathrm{as}}\left(\mathrm{CO}_{2}\right)$ and $\nu_{\mathrm{s}}\left(\mathrm{CO}_{2}\right)$] reported by Deacon [13]. This is consistent with the structure defined by X-ray diffraction study. Trifluroacetate ligand was also observed to bind terminally to the metal atom in a unidentate (η^{1}-oxo) mode in other complexes [14]. Compared to the weakly coordinated BF_{4}^{-}and $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$ligands, the $\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}$anion shows a slightly stronger coordination ability [15] to substitute the labile $\mathrm{CH}_{3} \mathrm{CN}$ ligand of intermediate 2 , leading to the formation of complex 3a.

The reaction of complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ (1) with $\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affords complex (μ $\mathrm{H}^{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNPr}^{2}\right)\left(\eta^{1}-\mathrm{OCOC=CH}\right)$ (3b). An X-ray crystal analysis of complex 3b was undertaken recently in order to obtain unambiguous information of its molecular stereochemistry (Fig. 2). This structure shows the complex containing a terminal unidentate (η^{1}-oxo)

TABLE 1. Crystal and intensity collection data for ($\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\boldsymbol{\eta}^{1}-\mathrm{OCOCF}_{3}\right)(3 \mathrm{a})$ and $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOC=CH}\right)(3 \mathrm{~b})$

Formula	$\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{12} \mathrm{Os}_{3}$	$\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{NO}_{12} \mathrm{Os}_{3}$
F.W.	1033.83	989.85
Space group	$P 2_{1} / \mathrm{n}$	$\mathrm{P3}_{2}$
a, \AA	11.6632(19)	14.853(3)
b, \AA	14.7827(24)	
c, \AA	14.487(3)	9.158(3)
β, deg	103.635(15)	
V, \AA^{3}	2427.4(7)	1749.6(7)
$D_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	2.829	2.818
Z	4	3
Cryst. dimension, mm	$0.38 \times 0.19 \times 0.44$	$0.46 \times 0.31 \times 0.38$
Abs. coeff. μ (Mo K α), mm ${ }^{-1}$	15.76	18.38
Temp.	Room temperature	Room temperature
Radiation	Mo K $\alpha^{\text {d }}$	Mo K ${ }_{\boldsymbol{\alpha}}$
2θ (max)	$44.9{ }^{\circ}$	$44.8{ }^{\circ}$
Scan type	$\theta-2 \theta$	$\theta-2 \theta$
Total no. of reflctn.	3353	1729
No. of observed refictn.	2477	1410
	$F_{\mathrm{o}}>2 \sigma\left(F_{\mathrm{o}}\right)$	$F_{0}>2.5 \sigma\left(F_{\mathrm{o}}\right)$
Observed variables	316	278
R	0.052	0.032
$R_{\text {w }}$	0.054	0.038
$\Delta(\rho), \mathrm{e} \AA^{-3}$	3.460	1.220
$\Delta / \sigma_{\text {max }}$	0.498	0.180
GOF	2.50	1.69

carboxylate ligand rather than our previously suggested bridging unidentate ($\mu_{2}-\eta^{1}$-oxo) mode [5]. Basically, this structure of $\mathbf{3 b}$ is similar to that of complex 3a. The bridging hydride which was observed crystallographically coordinates between $\mathrm{Os}(2)$ and $\mathrm{Os}(3)$ in accord with the elongation of $\mathrm{Os}(2)-\mathrm{Os}(3)$ bond [2.9982(20) \AA]. The isocyanide moiety bonds to $\mathrm{Os}(3)$ at the axial position. The carboxylate ligand is coordinated at $\operatorname{Os}(2)$ with a terminal unidentate (η^{1}-oxo) mode. The isocyanide and the carboxylate ligands are trans to each other with respect to the triosmium plane. Two $\mathrm{C}-\mathrm{O}$ bonds $[1.24(4)$ and $1.25(4) \AA$] in carboxylate ligand are near the same length, and $\mathrm{C}(18)-\mathrm{C}(19)$ with a distance of $1.14(6) \AA$ is a typical $\mathrm{C}-\mathrm{C}$ triple bond. According to the criterion reported by Deacon [13], complex 3b was suggested to contain a unidentate carboxylate group based on the absorption peaks in the $\nu\left(\mathrm{CO}_{2}\right)$ region [$\Delta_{\text {unidentate }}=311 \mathrm{~cm}^{-1}$, $\left.\Delta_{\text {ionic }}=199 \mathrm{~cm}^{-1}\right]$. However, this evidence from the IR spectrum alone is not sufficient to predict precisely whether the carboxylate ligand is coordinated as terminal unidentate or bridging unidentate modes. The X-ray diffraction study shows that the coordinated oxygen of carboxylate group in complex $\mathbf{3 b}$ is unable to attack the vicinal Os atom to form the bridging unidentate ($\mu_{2^{-}}$ η^{1}-oxo) coordination mode. Complexes containing similar η^{1}-oxo carboxylate mode were also observed in literature [16].

Treatment of $\left[(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})\right]^{+}$ BF_{4}^{-}(2a) with excess $\mathrm{CH}=\mathrm{CCO}_{2}-\mathrm{Na}^{+}$yields mainly the hydrido complex $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1-}\right.$ $\mathrm{OCOC}=\mathrm{CH}$) (3b) and the very minor bridging aminocarbyne complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu_{2}-\mathrm{CNHPr}\right)\left(\mu_{2}-\right.$ $\mathrm{OCOC}=\mathrm{CH})(4)$. In comparison with BF_{4}^{-}, the stronger nucleophile $\mathrm{CH}=\mathrm{CCO}_{2}^{-}$readily substitutes the acetonitrile ligand in intermediate 2 to afford ($\mu-\mathrm{H}^{2} \mathrm{Os}_{3}-$ $(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOC=CH}\right)(3 \mathrm{~b})$. This reaction provides convincing evidence that complex 2 is the intermediate for the formation of complex 3 as shown in Scheme 1. The formation of traces of the bridging aminocarbyne complex 4 is probably due to the isomerization of 3b induced by the excess of the base $\mathrm{CH} \equiv \mathrm{CCO}_{2}^{-}$. A related example of isomerization of $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNR})$ to $\mathrm{HOs}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{CNHPr})$ catalyzed by base has been reported previously [8,17].

The ${ }^{1} \mathrm{H}$ NMR spectrum showed that complex (μ $\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNPr}^{2}\right)\left(\boldsymbol{\eta}^{1}-\mathrm{OCOCF}_{3}\right)$ exists as two isomeric forms (3 a and $3 \mathrm{a}^{\prime}$) with hydride resonance at δ -15.02 and $\delta-15.09$ in a $10: 1$ ratio. In addition, complex ($\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOC}=\mathrm{CH}\right)$ exhibits a similar pair ($\mathbf{3 b}$ and $\mathbf{3 b}^{\mathbf{\prime}}$) of hydride peaks at $\delta-15.07,-15.23$ in a $10: 3$ ratio in its ${ }^{1} \mathrm{H}$ NMR spectrum as reported previously [5]. Complex 2 also exists as two isomers implying that the site preference
for protonation of the starting material $\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}$ (CNPr)(NCMe) (1) may be responsible for the final configuration of products.

On the basis of the above observations, the reactions of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ with Brønsted acids most likely proceed by two distinct steps. Protonation is regarded as the initial step in the process, followed by subsequent replacement of labile acetonitrile by carboxylate anion to yield the final products (μ $\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOR}\right)$.

3. Experimental section

3.1. General data

Complexes $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CNPr})$ and $\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}$ (CNPr)(NCMe) were prepared previously [3,5]. Other

TABLE 2. Atomic coordinates and isotropic thermal parameters $\left(\AA^{2}\right)$ for $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNPr}^{2}\right)\left(\eta^{1}-\mathrm{OCOCF}_{3}\right)(3 \mathrm{a})$

Atom	x	y	z	$B_{\text {iso }}{ }^{\text {a }}$
Os1	0.76735(8)	0.84507(5)	0.99971(6)	3.51(4)
Os2	0.87141(8)	0.70170(5)	$1.12780(6)$	$3.40(4)$
Os3	0.86292(8)	0.89310(5)	1.19401(6)	3.64(4)
N	1.1284(14)	0.7359(10)	$1.0939(12)$	4.1(9)
F1	0.4691(16)	0.8466(16)	$1.2372(14)$	13.8(15)
F2	0.5633(20)	0.7682(12)	$1.3363(18)$	15.6(17)
F3	0.5232(19)	0.8766(16)	$1.3806(15)$	15.3(17)
O1	1.0098(14)	0.8812(10)	0.9531(12)	6.2(9)
O2	0.6866(18)	0.7261(11)	$0.8240(11)$	7.6(11)
O3	0.6855(15)	1.0333(9)	$0.9237(12)$	6.5(10)
O4	0.5213(14)	0.8230 (11)	1.0421(13)	$7.2(10)$
O5	0.8266(18)	0.5621(10)	$0.9662(12)$	$7.9(11)$
O6	$0.9867(17)$	0.5749 (10)	$1.2922(13)$	7.9(11)
07	0.6241(14)	0.6552(10)	$1.1557(12)$	6.1(9)
O8	$0.9818(17)$	0.9244(12)	$1.4050(11)$	7.7(11)
O9	1.0979(14)	0.9404(9)	$1.1562(12)$	6.0(9)
010	0.7733(17)	1.0841(9)	1.1440(13)	$7.0(11)$
011	0.6979(13)	0.8529(9)	1.2226(10)	5.1(8)
O12	0.7064(15)	0.9552(10)	1.3424(12)	6.5(9)
C1	0.9274(22)	0.8692(13)	0.9761(17)	5.2(12)
C2	0.7117(21)	0.7707(14)	0.8875(16)	5.2(12)
C3	0.7202(21)	0.9625(13)	0.9559(17)	5.4(13)
C4	0.6117(22)	0.8265(15)	1.0318(18)	6.2(13)
C5	0.8406(21)	0.6140(13)	1.0244(17)	5.3(12)
C6	0.9420(21)	0.6202(14)	1.2293(17)	5.4(12)
C7	0.7108(20)	0.6757(12)	$1.1434(15)$	4.5(11)
C8	$0.9296(21)$	0.9125(13)	$1.3259(17)$	$5.0(12)$
C9	1.0146(24)	0.9241(13)	1.1699(17)	$6.0(13)$
C10	0.8118(23)	1.0117(13)	1.1664(15)	5.6(13)
C11	1.0411(20)	0.7278(12)	1.1073(15)	4.7(10)
C12	1.2460(21)	0.7474(15)	1.0818(18)	5.9(14)
C13	$1.3056(22)$	0.6559(16)	$1.0842(19)$	6.4(14)
C14	1.320 (3)	0.6075(16)	$1.1756(21)$	8.2(17)
C15	0.6651(22)	0.8891(15)	1.2944(15)	$5.3(13)$
C16	0.5472(23)	0.8508(19)	1.3067(17)	7.0(15)

[^0]reagents were purchased from commercial sources and were used as received. All manipulations were performed under a nitrogen atmosphere using standard

Schlenk techniques. Solvents were dried by stirring over CaH_{2} (hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$) and were freshly distilled prior to use. IR spectra were recorded on a

TABLE 3. Selected bond distances (\AA) and angles (deg) for $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNPr}^{(}\right)\left(\eta^{1}-\mathrm{OCOCF}_{3}\right)(3 \mathrm{a})$

(a) Bond distances			
$\mathrm{Os}(1)-\mathrm{Os}(2)$	2.8890(11)	O(1)-C(1)	1.10(3)
$\mathrm{Os}(1)-\mathrm{Os}(3)$	2.8619(13)	$\mathrm{O}(2)-\mathrm{C}(2)$	1.11(3)
$\mathrm{Os}(1)-\mathrm{C}(1)$	2.01(3)	O(3)-C(3)	1.18(3)
$\mathrm{Os}(1)-\mathrm{C}(2)$	1.943(23)	$\mathrm{O}(4)-\mathrm{C}(4)$	1.10(3)
$\mathrm{Os}(1)-\mathrm{C}(3)$	1.885(22)	O(5)-C(5)	1.12(3)
Os(1)-C(4)	$2.00(3)$	$\mathrm{O}(6)-\mathrm{C}(6)$	1.15(3)
$\mathrm{Os}(2)-\mathrm{Os}(3)$	2.9967(11)	O(7)-C(7)	1.11(3)
Os(2)-C(5)	1.950 (23)	$\mathrm{O}(8)-\mathrm{C}(8)$	1.18(3)
Os(2)-C(6)	1.929 (24)	$\mathrm{O}(9)-\mathrm{C}(9)$	1.06(3)
Os(2)-C(7)	1.976(23)	O(10)-C(10)	1.18(3)
Os(2)-C(11)	$2.106(25)$	O(11)-O(15)	1.304(24)
$\mathrm{Os}(3)-\mathrm{O}(11)$	$2.146(14)$	$\mathrm{O}(12)-\mathrm{C}(15)$	1.23(3)
Os(3)-C(8)	1.907(24)	C(12)-C(13)	1.52(3)
Os(3)-C(9)	1.94(3)	Os(3)-C(10)	1.865(23)
$\mathrm{N}-\mathrm{C}(11)$	1.09(3)	C(13)-C(14)	1.48(4)
$\mathrm{N}-\mathrm{C}(12)$	1.43(3)	F(1)-F(2)	1.97(3)
$\mathrm{F}(1)-\mathrm{F}(3)$	2.07(3)	F(1)-C(16)	1.19(3)
$F(2)-F(3)$	1.83(3)	$\mathrm{F}(2)-\mathrm{C}(16)$	1.29(3)
C(15)-C(16)	1.54(3)	F(3)-C16)	1.23(3)
(b) Bond angles			
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	62.81(3)	Os(2)-Os(1)-O(1)	88.5(6)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(2)$	97.4(6)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(3)$	159.5(7)
Os(2)-Os(1)-C(4)	91.0(7)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(1)$	87.8(6)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(2)$	159.9(6)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(3)$	96.8(7)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(4)$	88.3(7)	Os(3)-O(11)-O(15)	119.0(13)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(2)$	95.7(10)	Os(1)-C(1)-O(1)	172.4(20)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(3)$	89.3(9)	$\mathrm{Os}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	175.7(22)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(4)$	175.8(9)	$\mathrm{Os}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	175.6(21)
$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(3)$	103.1(9)	Os(1)-C(4)-O(4)	172.2(21)
$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(4)$	88.5(10)	$\mathrm{Os}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	177.6(22)
$\mathrm{C}(3)-\mathrm{Os}(1)-\mathrm{C}(4)$	89.8(9)	$\mathrm{Os}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	176.8(19)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	58.15(3)	Os(2)-C(7)-O(7)	174.6(18)
Os(1)-Os(2)-C(5)	91.2(6)	Os(3)-C(8)-O(8)	173.2(21)
Os(1)-Os(2)-O(6)	170.8(6)	$\mathrm{Os}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	179.3(18)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(7)$	87.1(6)	$\mathrm{Os}(3)-\mathrm{C}(10)-\mathrm{O}(10)$	175.3(21)
Os(1)-Os(2)-C(11)	92.4(5)	$\mathrm{Os}(2)-\mathrm{C}(11)-\mathrm{N}$	175.3(16)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(5)$	149.3 (6)	N-C(12)-(13)	109.7(18)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(6)$	112.7(6)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(7)$	92.5(5)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(11)$	$88.6(5)$	C(5)-Os(2)-C(6)	98.09)
$\mathrm{C}(5)-\mathrm{Os}(2)-\mathrm{C}(7)$	87.2(9)	$\mathrm{C}(5)-\mathrm{Os}(2)-\mathrm{C}(11)$	91.3(9)
$\mathrm{C}(6)-\mathrm{Os}(2)-\mathrm{C} 7$)	92.1(9)	O 6 -Os(2)-C(11)	88.6 (9)
C(7)-Os(2)-C(11)	178.4(8)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	59.04(3)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{O}(11)$	87.8(4)	Os(1)-Os(3)-C(8)	174.3(6)
Os(1)-Os(3)-C(9)	92.4(6)	Os(1)-Os(3)-C(10)	89.5(6)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{O}(11)$	84.2(4)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(8)$	115.2(6)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(9)$	93.8(6)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(10)$	148.4(7)
O(11)-C(15)-O(12)	128.9(21)	$\mathrm{O}(11)-\mathrm{Os}(3)-\mathrm{C}(8)$	$91.2(8)$
$\mathrm{O}(11)-\mathrm{C}(15)-\mathrm{C}(16)$	112.3(19)	$\mathrm{O}(11)-\mathrm{Os}(3)-\mathrm{C}(9)$	177.5(8)
$\mathrm{O}(12)-\mathrm{C}(15)-\mathrm{C}(16)$	$118.0(20)$	$\mathrm{O}(11)-\mathrm{Os}(3)-\mathrm{C}(10)$	92.6 (8)
$F(1)-C(16)-F(2)$	104.7(25)	C(8)-Os(3)-C(9)	88.3(10)
$\mathrm{F}(1)-\mathrm{C}(16)-\mathrm{F}(3)$	117(3)	$\mathrm{C}(8)-\mathrm{Os}(3)-\mathrm{C}(10)$	96.2(9)
F(1)-C(16-C(15)	116.6(20)	C(9)-Os(3)-C(10)	89.9(10)
F(2)-C(16)-F(3)	92.8(22)	$\mathrm{C}(11)-\mathrm{N}-\mathrm{C}(12)$	176.8(22)
F(2)-C(16)-C(15)	108.9(23)	$F(2)-F(1)-F(3)$	53.7(11)
F(3)-C(16)-C(15)	112.4(22)		

Perkin-Elmer 882 infrared spectrophotometer. NMR spectra were obtained on a Bruker MSL-200, an AC200 or an AMX-500 FT NMR spectrometer, and mass spectra were recorded on a VG 70-250S mass spectrometer. Elemental analyses were performed using a Perkin-Elmer 2400 CHN elemental analyzer.

3.2. Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})$ with HBF_{4}. $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$

A solution of $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CNPr})(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and acetonitrile (1 ml) was treated with a solution of $\mathrm{Me}_{3} \mathrm{NO}(3 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $20: 100$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml). The mixture was stirred for 30 min at room temperature and filtered through a short silica column. The solvent was removed under vacuum, and the residue was dissolved in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})-$ (NCMe) was treated with excess $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(0.02 \mathrm{ml}$, 0.15 mmol) and stirred for 10 min . The solvent was removed under vacuum to furnish $\left[(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ (CNPr) $(\mathrm{NCMe})]^{+} \mathrm{BF}_{4}^{-}$(2a) with more than 80% NMR yield. The IR spectrum showed that the reaction proceeded almost quantitatively. Attempts to grow a single crystal of 2a for X-ray study were not successful. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CN})=2231 w, \nu(\mathrm{CO})=2118 \mathrm{w}, 2090$ vs, $2075 \mathrm{~s}, 2036 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.91(\mathrm{t}, 2 \mathrm{H}$, CNCH_{2}), 2.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCCH}_{3}$), $1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right),-16.57,-16.66$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Os}-\mathrm{H}-\mathrm{Os}$, two isomers in a $20: 1$ ratio).

Complex 2b was obtained under reaction conditions similar to those of 2a using $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ as reagent. Data for $\left[(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-} \quad$ (2b) are as follows. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CN})=2230 \mathrm{w}, \nu(\mathrm{CO})=$ 2118w, 2090vs, 2075s, 2037s cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 3.91\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CNCH}_{2}\right), 2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCCH}_{3}\right), 1.74$ (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right),-16.51,-16.60(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{Os}-\mathrm{H}-\mathrm{Os}$, two isomers in a $20: 1$ ratio).

3.3. Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(C N P r)(N C M e)$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$

A solution of $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CNPr})(54 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ and acetonitrile (1 ml) was treated with a solution of $\mathrm{Me}_{3} \mathrm{NO}(8 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $20: 100$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml). The mixture was stirred for 30 min at room temperature and filtered through a small silica column. The solvent was removed under vacuum, and the residue was dissolved in 60 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})$ (NCMe) was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(9 \mu \mathrm{l}, 0.08 \mathrm{mmol}$) and stirred for 10 min . The solvent was removed under vacuum, and the residue was chromatographed on a silica gel TLC plate with $50: 50 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as eluent to give $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNPr}^{(}\right)\left(\eta^{1}-\mathrm{OCOCF}_{3}\right)$
(3a) ($36 \mathrm{mg}, 0.04 \mathrm{mmol}, 61 \%$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{12} \mathrm{Os}_{3}$: C, 18.58; $\mathrm{H}, 0.77$. Found: C, 18.85; $\mathrm{H}, 0.74 \%$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CN})=2228 \mathrm{w}, \nu(\mathrm{CO})=$ 2113w, 2084vs, 2069s, 2043m, 2022s, 2013 sh, 1983br $\mathrm{cm}^{-1}\left[\nu\left(\mathrm{CO}_{2}\right)=1684,1401 \mathrm{~cm}^{-1}\right.$ in KBr$] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.86,3.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, J(\mathrm{HH})=6.9 \mathrm{~Hz}\right.$, two isomers), $1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $J(\mathrm{HH})=7.2 \mathrm{~Hz}),-15.02,-15.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Os}-\mathrm{H}-\mathrm{Os}$, two isomers in a $10: 1$ ratio). MS (FAB): $m / z 1033$ $\left(\mathrm{M}^{+}\right)$.
3.4. Reaction of $\left[(\mu-H) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCMe})\right]^{+}$ BF_{4}^{-}with $\mathrm{HC} \equiv \mathrm{CCO}_{2}^{-} \mathrm{Na}^{+}$

A solution of $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CNPr})(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and acetonitrile (1 ml) was treated with a solution of $\mathrm{Me}_{3} \mathrm{NO}(4 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $20: 100$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml). The mixture was stirred for 30 min at room temperature and filtered through a

TABLE 4. Atomic coordinates and isotropic thermal parameters $\left(\AA^{2}\right)$ for $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOC}=\mathrm{CH}\right)(3 b)$

Atom	\boldsymbol{x}	y	z	$B_{\text {iso }}{ }^{\text {a }}$
Os1	0.23971(9)	0.43115(9)	0.62287	2.83(6)
Os2	0.23303(9)	$0.33555(9)$	0.89771(17)	2.48(6)
Os3	0.08809(9)	$0.21285(9)$	0.65461(17)	2.62 (6)
N	-0.0886(23)	$0.2481(27)$	0.7922(35)	5.5(20)
O1	0.0589(23)	$0.4687(18)$	0.6832(27)	5.3(16)
O 2	$0.4291(21)$	$0.4038(20)$	$0.5752(34)$	6.5(19)
O3	0.2295(25)	$0.4556(23)$	0.3014(40)	7.7(22)
O4	$0.3785(19)$	$0.6588(18)$	0.7226(29)	5.6(15)
O5	$0.0895(19)$	$0.4121(21)$	1.0042(29)	5.8(16)
O6	0.4227(19)	$0.5358(21)$	1.0030(31)	5.9(15)
07	0.2143(22)	$0.2328(21)$	$1.1833(29)$	6.1(19)
O8	0.2513(20)	$0.1769(18)$	$0.5159(26)$	4.7(16)
O9	-0.0396(18)	-0.0215(17)	0.7018(24)	4.0(13)
010	$0.0071(24)$	$0.2187(26)$	$0.3515(28)$	$7.5(22)$
O15	$0.3207(15)$	$0.2690(16)$	$0.8135(22)$	3.1(12)
017	$0.4527(23)$	$0.3463(24)$	0.9611(39)	8.5(24)
C1	$0.1231(22)$	$0.4472(23)$	0.6663(34)	3.2(17)
C2	$0.3557(25)$	$0.4100(20)$	$0.5975(38)$	3.6(17)
C3	$0.2336(31)$	$0.4462(27)$	0.4269(40)	4.6(24)
C4	$0.3294(30)$	$0.5744(29)$	0.6895(31)	4.1(24)
C5	$0.1435(23)$	0.3827(23)	$0.9580(30)$	2.8(5)
C6	0.3551(29)	$0.4607(29)$	$0.9596(36)$	4.3(21)
C7	$0.2209(25)$	$0.2659(24)$	$1.0795(30)$	3.1(18)
C8	$0.1970(20)$	$0.1962(21)$	0.5714(29)	2.3 (14)
C9	$0.0094(27)$	$0.0640(27)$	$0.6873(40)$	$4.7(20)$
C10	$0.0406(20)$	$0.2164(24)$	$0.4576(41)$	3.6(17)
Cll	-0.0257(25)	$0.2389(25)$	$0.7440(36)$	3.9 (18)
C12	-0.1577(36)	$0.2891(36)$	0.8293(52)	7.2(11)
C13	-0.2009(63)	$0.2450(59)$	$0.9689(94)$	14.2(24)
C14	$-0.2733(31)$	0.2773 (30)	1.0472(43)	5.6(9)
C16	0.4067(31)	$0.2865(24)$	$0.8575(32)$	3.8(21)
C18	0.4451(28)	0.2194(29)	$0.8026(37)$	4.1 (20)
C19	0.4816(31)	$0.1738(33)$	0.7557(42)	5.5(25)
H	0.112	0.213	0.882	2.7

[^1]small silica column. The solvent was removed under vacuum, and the residue was dissolved in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})$ (NCMe) was then treated with excess $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$
($0.04 \mathrm{ml}, 0.34 \mathrm{mmol}$) and stirred for 10 min . The product $\left[(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\mathrm{NCMe}^{2}\right)\right]^{+} \mathrm{BF}_{4}^{-} \quad$ (2a) was treated with a suspension of excess $\mathrm{HC} \equiv \mathrm{CCO}_{2}^{-} \mathrm{Na}^{+}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at room temperature. The IR spec-

TABLE 5. Selected bond distances (\AA) and angles (deg) for ($\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOC=CH}\right)(3 \mathrm{~b})$

(a) Bond distances			
$\mathrm{Os}(1)-\mathrm{Os}(2)$	2.8672(18)	O(4)-C(4)	1.13(5)
$\mathrm{Os}(1)-\mathrm{Os}(3)$	2.8926(17)	$\mathrm{O}(5)-\mathrm{C}(5)$	1.17(4)
$\mathrm{Os}(1)-\mathrm{C}(1)$	1.90(3)	$\mathrm{O}(6)-\mathrm{C}(6)$	1.14(4)
$\mathrm{Os}(1)-\mathrm{C}(2)$	1.91(4)	$\mathrm{O}(7)-\mathrm{C}(7)$	1.05(4)
$\mathrm{Os}(1)-\mathrm{C}(3)$	1.82(4)	$\mathrm{O}(8)-\mathrm{C}(8)$	1.11(4)
$\mathrm{Os}(1)-\mathrm{C}(4)$	1.96(4)	$\mathrm{O}(9)-\mathrm{C}(9)$	1.11(4)
$\mathrm{Os}(2)-\mathrm{Os}(3)$	2.9982(20)	$\mathrm{O}(10)-\mathrm{C}(10)$	1.10(4)
$\mathrm{Os}(2)-\mathrm{O}(15)$	$2.135(17)$	$\mathrm{O}(15)-\mathrm{C}(16)$	1.24(4)
Os(2)-C(5)	1.87(3)	$\mathrm{O}(17)-\mathrm{C}(16)$	$1.25(4)$
$\mathrm{Os}(2)-\mathrm{C}(6)$	1.92(4)	O(12)-C(13)	1.43(10)
Os(2)-C(7)	1.92(3)	$\mathrm{Os}(2)-\mathrm{H}$	1.82
$\mathrm{Os}(3)-\mathrm{C}(8)$	1.91(3)	C(13)-C(14)	1.55(9)
$\mathrm{Os}(3)-\mathrm{C}(9)$	1.94(4)	$\mathrm{Os}(3)-\mathrm{C}(10)$	1.95(4)
$\mathrm{Os}(3)-\mathrm{C}(11)$	2.08(4)	$\mathrm{Os}(3)-\mathrm{H}$	2.11
N -C(11)	1.10(5)	$\mathrm{N}-\mathrm{C}(12)$	1.47(6)
C(16)-C(18)	1.46(5)	$\mathrm{O}(1)-\mathrm{C}(1)$	1.16(4)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.14(6)	$\mathrm{O}(2)-\mathrm{C}(2)$	1.16(4)
$\mathrm{O}(3)-\mathrm{C}(3)$	1.16(5)		
(b) Bond angles			
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	62.74(4)	C(8)-Os(3)-C(9)	88.9(14)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Cl}(1)$	94.0(10)	$\mathrm{C}(8)-\mathrm{Os}(3)-\mathrm{C}(10)$	88.6(11)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(2)$	80.6 (10)	$\mathrm{C}(8)-\mathrm{Os}(3)-\mathrm{C}(11)$	177.2(12)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(3)$	159.5(10)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(4)$	95.8(8)
C(9)-Os(3)-C(10)	98.9(13)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(1)$	82.7(9)
$\mathrm{C}(9)-\mathrm{Os}(3)-\mathrm{C}(11)$	94.0(15)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(2)$	95.1(8)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(3)$	100.3(11)	$\mathrm{C}(10)-\mathrm{Os}(3)-\mathrm{C}(11)$	$91.2(12)$
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(4)$	155.7(9)	$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(2)$	174.6(14)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(3)$	94.9(15)	O(11)-N-O(12)	162(4)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(4)$	88.1(13)	$\mathrm{Os}(2)-\mathrm{O}(15)-\mathrm{C}(16)$	126.2(18)
$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(3)$	90.3(16)	$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	171(3)
$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(4)$	92.1(13)	$\mathrm{Os}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	174(3)
$\mathrm{C}(3)-\mathrm{Os}(1)-\mathrm{C}(4)$	102.9(14)	$\mathrm{Os}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	179(3)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	59.05(5)	$\mathrm{Os}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	176(3)
Os(1)-Os(2)-O(15)	92.0(5)	$\mathrm{Os}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	175(3)
Os(1)-Os(2)-C(5)	85.9(9)	$\mathrm{Os}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	174(3)
Os(1)-Os(2)-C(6)	89.9(10)	$\mathrm{Os}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	175(3)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(7)$	176.9(9)	$\mathrm{Os}(3)-\mathrm{C}(8)-\mathrm{O}(8)$	172.1(24)
$\mathrm{Os}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	176(3)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{O}(15)$	82.5(6)
Os(3)-C(10)-O(10)	174(3)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(5)$	91.0(9)
$\mathrm{Os}(3)-\mathrm{C}(11)-\mathrm{N}$	176(3)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(6)$	148.2(10)
$\mathrm{N}-\mathrm{C}(12)-\mathrm{C}(13)$	105(5)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(7)$	118.1(9)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{H}$	43.95	$\mathrm{O}(15)-\mathrm{Os}(2)-\mathrm{C}(5)$	173.3(10)
$\mathrm{O}(15)-\mathrm{Os}(2)-\mathrm{C}(6)$	93.2(12)	$\mathrm{O}(15)-\mathrm{Os}(2)-\mathrm{C}(7)$	88.7(11)
C(12)-C(13)-O(14)	119(6)	$\mathrm{C}(5)-\mathrm{Os}(2)-\mathrm{C}(6)$	93.1(14)
$\mathrm{C}(5)-\mathrm{Os}(2)-\mathrm{C}(7)$	93.1(13)	C(6)-Os(2)-C(7)	93.1(13)
Os(1)-Os(3)-Os(2)	58.22(4)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(8)$	82.5(8)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(9)$	168.9(10)	Os(1)-Os(3)-C(10)	88.1(9)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(11)$	94.6(9)	$\mathrm{O}(15)-\mathrm{C}(16)-\mathrm{O}(17)$	122(3)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(8)$	88.7(8)	$\mathrm{O}(15)-\mathrm{C}(16)-\mathrm{C}(18)$	117(3)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(9)$	114.8(10)	$\mathrm{O}(17)-\mathrm{C}(16)-\mathrm{C}(18)$	119(3)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Cl}(10)$	146.2(9)	$\mathrm{C}(16)-\mathrm{C}(18)-\mathrm{C}(19)$	174(4)
Os(2)-Os(3)-C(11)	89.9(8)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{H}$	36.81
$\mathrm{Os}(2)-\mathrm{H}-\mathrm{Os}(3)$	99.25		

trum showed that the transformation from $\mathbf{2 a}$ to $\mathbf{3 b}$ was completed in 5 h . The resulting solution was filtered, concentrated and chromatographed on a silica gel TLC plate with $50: 50 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane as eluent to give $(\mu-\mathrm{H}) \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\mu_{2}-\mathrm{OCOC}=\mathrm{CH}\right)(3 \mathrm{~b})(9 \mathrm{mg}$, $0.009 \mathrm{mmol}, 28 \%)$ and $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{CNHPr})(\mu-$ OCOC=CH) (4) ($1 \mathrm{mg}, 0.001 \mathrm{mmol}, 3 \%$).
3.5. Crystallographic structure determination of (μ H) $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})\left(\eta^{1}-\mathrm{OCOCF}_{3}\right)$ (3a) and (μ H) $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNPr}^{2}\right)\left(\eta^{1}-\mathrm{OCOC} \equiv \mathrm{CH}\right)(3 b)$.

Crystals 3a and 3b were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solutions at $-5^{\circ} \mathrm{C}$. Specimens of suitable quality were mounted on a glass capillary and used for measurement of precise cell constants and intensity data collection. All diffraction measurements were made on an Enraf-Norius CAD-4 diffractometer using graphitemonochromatized Mo $\mathrm{K} \boldsymbol{\alpha}$ radiation ($\lambda=0.70930 \AA$) with $\theta-2 \theta$ scan mode. Unit cells were determined and refined using 25 randomly selected reflections obtained using the CAD-4 automatic search, centre, index and least-squares routines. Space groups were determined from the systematic absences observed during data collection. The systematic absences in the diffraction data of 3 a and $\mathbf{3 b}$ unambiguously established the space group as $P 2_{1} / n$ and $P 3_{2}$, respectively. An empirical absorption correction was applied to each of the data sets. The structure of 3 a was solved by heavy-atom method, and 3b was solved by direct method. All remaining non-hydrogen atoms were located from the difference Fourier map, and they were included in the final refinement cycle and refined by full-matrix least squares. All the data processing was carried out on a Microvax 3600 using the NRCC sDP program. Crystallographic data are shown in Table 1. Final atomic coordinates, isotropic thermal parameters, and selected bond distances and bond angles for two complexes are listed in Tables 2-5.

4. Supplementary material available

Tables of atomic coordinates, crystal and intensity collection data, anisotropic thermal parameters, and bond lengths and angles (10 pages), and tables of structure factors (19 pages) are available from the authors.

Acknowledgments

We thank the National Science Council of the Republic of China for financial support.

References

1 G. Lavigne and H.D. Kaesz, in B.C. Gates, L. Guczi and H. Knözinger (Eds.), Metal Clusters in Catalysis, Elsevier, Amsterdam, 1986.
2 (a) D. Daresbourg, in D.F. Shriver, H.D. Kaesz and R.D. Adams (Eds.), The Chemistry of Metal Cluster Complexes, VCH, New York, 1990; (b) A.J. Poé, in M. Moscowits (Ed.), Metal Cluster, Wiley-Interscience, New York, 1986; (c) R.D. Adams, Y. Chi, D.D. DesMarteau, D. Lentz and R. Marschall, J. Am. Chem. Soc., 114 (1992) 1909.
3 (a) Y.W. Lin, H.M. Gau, Y.S. Wen and K.L. Lu, Organometallics, 11 (1992) 1445; (b) K.L. Lu, C.C. Chen, Y.W. Lin, F.E. Hong, H.M. Gau, L.L. Gan and H.D. Luoh, J. Organomet. Chem., in press.
4 L.C. Chen, M.Y. Chen, J.W. Chen, Y.S. Wen and K.L. Lu, J. Organomet. Chem., 425 (1992) 99; (b) C.A. Mirkin, K.L. Lu, G.L. Geoffroy, A.L. Rheingold and D.L. Staley, J. Am. Chem. Soc., 111 (1989) 7279; (c) C.A. Mirkin, K.L. Lu, T.E. Snead, B.A. Young, G.L. Geoffroy, A.L. Rheingold and D.L. Staley, J. Am. Chem. Soc., 113 (1991) 3800; (d) J. Kiji, A. Matsumura, T. Haishi, S. Okazaki and J. Furukawa, Bull. Chem. Soc. Jpn., 50 (1977) 2731; (e) H. Alper and R.A. Partis, J. Organomet. Chem., 35 (1972) C40.

5 K.L. Lu, C.J. Su, Y.W. Lin, H.M. Gau and Y.S. Wen, Organometallics, 11 (1992) 3832.
6 B.F.G. Johnson, J. Lewis and D.A. Pippard, J. Chem. Soc., Dalton Trans., (1981) 407.
7 A.J. Deeming and M. Underhill, J. Chem. Soc., Dalton Trans., (1974) 1415.

8 R.D. Adams and N.M. Golembeski, J. Am. Chem. Soc., 101 (1979) 2579.

9 R.D. Adams and N.M. Golembeski, Inorg. Chem., 18 (1979) 1909.

10 R.D. Adams and J.E. Babin, Organometallics, 7 (1988) 963.
11 W. Klemperer and G.C. Pimentel, J. Chem. Phys., 22 (1954) 1399.
12 C.D. Garner and B. Hughes, Adv. Inorg. Chem. Radiochem., 17 (1975) 1.

13 (a) G.B. Deacon and R.J. Phillips, Coord. Chem. Rev., 33 (1980) 227; (b) G.B. Deacon and F. Huber, Inorg. Chim. Acta, 104 (1985) 41.

14 M.J. Chetcuti, J.C. Gordon, K.A. Green, P.E. Fanwick and D. Morgenstern, Organometallics, 8 (1989) 1790.
15 G.R. Frauenhoff, S.R. Wilson and J.R. Shapley, Inorg. Chem., 30 (1991) 78.

16 P. Frediani, M. Bianchi, F. Piacenti, S. Ianelli and M. Nardelli, Inorg. Chem., 26 (1987) 1592.
17 (a) R.D. Adams, Acc. Chem. Res., 16 (1983) 67; (b) E. Rosenberg, Polyhedron, 8 (1989) 383.

[^0]: ${ }^{\mathrm{a}} B_{\text {iso }}$ is the mean of the principal axes of the thermal ellipsoid.

[^1]: ${ }^{\text {a }} B_{\text {iso }}$ is the mean of the principal axes of the thermal ellipsoid.

